Activation of nuclear factor-kappa B in human metastatic melanomacells and the effect of oxidative stress.

نویسندگان

  • F L Meyskens
  • J A Buckmeier
  • S E McNulty
  • N B Tohidian
چکیده

The biological basis for the general pharmacological resistance of human melanoma is unknown. A unique biochemical feature of the melanocyte is the synthesis of melanin, which leads to the generation of hydrogen peroxide and the consumption of reduced glutathione. This activity produces a state of chronic oxidative stress in these cells. We demonstrated previously that the expression of the c-jun family was dysregulated in metastatic melanoma cells compared with normal human melanocytes (D. T. Yamanishi et al., J. Invest. Dermatol., 97: 349-353, 1991). In the current investigation, we measured the levels of two major redox response transcription factors, nuclear factor-kappaB (NF-kappaB) and activator protein-1, in metastatic melanoma cells and normal melanocytes and their response to oxidative stress. The basal DNA-binding activity of NF-kappaB as measured by the electrophoretic mobility shift assay in metastatic melanoma cells was increased 4-fold compared with that of normal melanocytes. This level of binding was paralleled by a 1.5- to 4-fold increase in the expression of p50 (NF-kappaB1), p65 (Rel-A), and IkappaB-alpha as measured by Northern blot analysis. In contrast, the expression of p75 (c-rel) was markedly decreased (60%) in melanoma cells compared with normal melanocytes. Following oxidative stress produced by enzyme-generated H2O2, free H2O2, or incubation with buthionine sulfoximine, NF-kappaB binding activity increased 1.5- to 2.5-fold in melanoma cells (buthionine sulfoximine > H2O2), but only slightly in normal melanocytes. In contrast, activator protein-1 binding activity was unaffected or increased in normal melanocytes in response to oxidative stress, but was either unaffected or decreased in melanoma cells. These results suggest that the redox regulation of melanoma cells at the molecular level is fundamentally different from normal melanocytes and may offer a unique avenue for preventive or therapeutic intervention as well as new insights into the pathogenesis of melanocyte transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modulatory Effect of Pioglitazone on Sperm Parameters and Oxidative Stress, Apoptotic and Inflammatory Biomarkers in Testes of Streptozotocin-Induced Diabetic Rats

Background and Aims: Diabetes mellitus causes testicular damage by increasing oxidative stress and inflammation. In the present study, modulation of oxidative stress by pioglitazone, a synthetic ligand of peroxisome proliferator-activated receptor-γ, was examined in testis of streptozotocin-induced diabetic rats. Materials and Methods: Diabetes was induced by a single dose of streptozot...

متن کامل

Naringin attenuates diabetic retinopathy by inhibiting inflammation, oxidative stress and NF-κB activation in vivo and in vitro

Objective(s): Naringin, an essential flavonoid, inhibits inflammatory response and oxidative stress in diabetes. However, whether naringin has beneficial effects on diabetic retinopathy (DR) remains unknown. Materials and Methods: Streptozotocin (STZ, 65 mg/kg) was intraperitoneally injected into male rats (8 weeks old weighting 200-250 g) to establish diabetic model, then naringin (20, 40 or 8...

متن کامل

Modulation of Lipopolysaccharide Stimulated Nuclear Factor kappa B Mediated iNOS/NO Production by Bromelain in Rat Primary Microglial Cells

Background: Microglial cells act as the sentinel of the central nervous system .They are involved in neuroprotection but are highly implicated in neurodegeneration of the aging brain. When over-activated, microglia release pro-inflammatory factors, such as nitric oxide (NO) and cytokines, which are critical in eliciting neuroinflammatory responses associated with neurodegenerative diseases. Thi...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 5 5  شماره 

صفحات  -

تاریخ انتشار 1999